skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bolli, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As over 11,000 people turn 65 each day in the U.S., our country, like many others, is facing growing challenges in caring for elderly persons, further exacerbated by a major shortfall of care workers. To address this, we introduce an eldercare robot (E-BAR) capable of lifting a human body, assisting with postural changes/ambulation, and catching a user during a fall, all without the use of any wearable device or harness. Our robot is the first to integrate these 3 tasks, and is capable of lifting the full weight of a human outside of the robot’s base of support (across gaps and obstacles). In developing E-BAR, we interviewed nurses and care professionals and conducted user experience tests with elderly persons. Based on their functional requirements, the design parameters were optimized using a computational model and trade-off analysis. We developed a novel 18-bar linkage to lift a person from a floor to a standing position along a natural trajectory, while providing maximal mechanical advantage at key points. An omnidirectional, nonholonomic drive base, in which the wheels could be oriented to passively maximize floor grip, enabled the robot to resist lateral forces without active compensation. With a minimum width of 38 cm, the robot’s small footprint allowed it to navigate the typical home environment. Four airbags were used to catch and stabilize a user during a fall in ≤ 250 ms. We demonstrate E-BAR’s utility in multiple typical home scenarios, including getting into/out of a bathtub, bending to reach for objects, sit-to-stand transitions, and ambulation. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026